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Abstract. The critical exponents and scaling function are calculated with the Wilson- 
Feynman graph technique to second order in e = 4 - d  for an n-component system with 
anisotropic Brillouin zone, using a general cut-off for the bare propagator G(p, ro, A )  = 
( ro+pz) - ’ f (p /A,  ro /A2) .  Universality holds provided that f(u, x )  is analytic in U and x 
around (0,O) and the first derivative fL(0, x )  = 0. 

1. Introduction 

One of the most striking aspects of the critical behaviour of physical systems is the 
notion of ‘universality’. Experimental results and theoretical investigations show 
(Fisher 1974) that the critical behaviour of a system can be described in terms of a few 
parameters (such as critical indices and scaling function) which depend only on the 
dimensionality d, the number of components of the order parameter n, the range of the 
interactions U and the symmetry group of the system 3 (Mukamel and Krinsky 1976). 
The introduction of the renormalization group technique made it possible to give a 
coherent description of the concept of universality in terms of relevant, marginal or 
irrelevant scaling and redundant operators (Green 1976, Wegner 1974). 

However, an exact renormalization group analysis becomes generally intractable in 
calculation beyond the lowest order in perturbation theory (Bruce et a1 1974). 
Particularly, in the framework of the so called E = 4-d expansion (d being the 
dimensionality of the system), irrelevant variables enter beyond the first order in E in a 
complicated way. Accordingly, most calculations use the simpler Wilson-Feynman 
graph technique (WFGT) (Wilson and Kogut 1974, Wilson 1972). 

In both methods it is assumed that only fluctuations with long wavelength (or small 
momentum) la a role in the critical domain. Thus the bare propagator Gi’(9, r )  = 
(r+9’)O-’(A -4’) essentially has been used, which corresponds to taking a spherical 
Brillouin zone. As has been previously stated, it is believed that the shape of the 
Brillouin zone as well as higher powers of 4 in the propagator are irrelevant. Thus the 
calculation with a bare propagator which contains an arbitrary cut-off function is not 
expected to change any of the universal quantities. 

This is an important point in the renormalization group explanation of the 
universality. Many works have been devoted to this question within different 
frameworks. Recently, the universality of the critical exponent 7 has been studied and 
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discussed within the framework of the general Gaussian renormalization group (Shukla 
and Green 1974,1975, Rudnick 1975, Goldner and Riedell975). These renormaliza- 
tion group transformations simulate a class of symmetric smooth cut-offs. Even for this 
particular case, the disappearance of the cut-off is far from obvious. Abstract argu- 
ments (Schroer 1973, Mitter 1973) have been given in the framework of the renor- 
malizability of the 44 theory to show the disappearance of the cut-off in the final results. 
However, it is not clear then that the results can be extended to the WFGT which mixes 
results coming from an exact renormalization group analysis with those of a perturba- 
tion scheme (Wilson and Kogut 1974). Moreover, the cut-offs used in the 4* field 
theory and in statistical physics have a different meaning. In field theory cut-offs are 
introduced in an ad hoc manner in order to regularize divergent integrals. Thus all the 
classes of cut-off studied have a spherical symmetry. For solid state physicists interested 
in the universal properties for a physical system at criticality, the cut-off has a physical 
meaning, since it describes the shape of the Brillouin zone which is never spherical. 
Consequently we find it useful to give a direct proof of the cut-off independence of the 
universal quantities within the framework of the widely used WFGT. 

The purpose of this paper is to define a ‘good’ general cut-off, eventually aniso- 
tropic, for which the critical exponents and scaling function are indeed universal. The 
study is made for an n-component spin system up to order E’. We show that 
universality holds providing that the cut-off function f ( p ,  x )  (defined more precisely in 
0 2) is analytic in p and x around (0,O) and its first derivative with respect t o p  is zero at 
the origin. The last condition ensures that there is no term linear in p in the inverse 
propagator, which is the expected situation for short-range forces. 

The plan of the paper is as follows. In $ 2, the model Hamiltonian with the most 
general form of cut-off in the bare propagator is defined; the principle of the Wilson- 
Feynman graph expansion is recalled. In $§ 3 and 4, the calculations of the critical 
exponent 71 and the four-point coupling constant uoc are performed. It is shown that up 
to second order in E ,  71 is indeed cut-off independent. In $ 5, the calculation of the 
critical index y from the two-point correlation function with composite s2 operator is 
given and again y is found to be cut-off independent up to E’. Thus, hyperscaling 
implies that all critical exponents are indeed universal up to order E’. In 0 6 ,  the scaling 
function is shown to be universal up to E’. Details of the calculation of several graphs 
are given in appendixes 1-5. 

2. The Wilson-Feynman graph technique 

The basic idea of the WFGT is that, when d is close to 4, one can match the irreducible 
four-point interaction uR with its perturbative expansion, providing that one chooses 
the bare four-point interaction as uOc(e), the bare inverse susceptibility as ro = roc(€) and 
sets all the higher-order coupling constants equal to zero (Wilson and Kogut 1974). 

For T close to T,, the bare inverse susceptibility ro is such that r - roc - T- T,. 
Usually, the bare propagator Ge(q, ro) = (ro + q2)-*f9(h - q’) is used in the perturba- 

tion theory. The cut-off A, proportional to the inverse lattice spacing, is such that 
ro<< A’. The eventual anisotropy of the Brillouin zone, as well as higher-order terms in q 
in the propagator are presupposed to be irrelevant. In order to prove this point in 
general, we introduce a bare propagator with a general cut-off function f instead of a 
simple 6 function. By definition, f has to be dimensionless. However, it could depend 
on the momentum p ,  the inverse bare susceptibility ro and another momentum A which 
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characterizes the size of the cut-off (such that f - 1 for p << A andf - 0 for p >>A). So the 
general form for f is f (p/h,  ro /h2) .  Moreover, it is physically reasonable to restrict 
ourselves to functions f (u ,  x) which are analytical around (0,O) in order to avoid 
spurious non-analytical behaviour coming from the starting Hamiltonian itself. So the 
most general bare propagator is of the form 

G;'(p, r)=(r+p2)f-l(p/A, r / h 2 )  (2.1) 

and the Hamiltonian of the system is 

As usual, it is useful to introduce the real inverse susceptibility r, by performing a 
self-mass correction (which here is momentum dependent), namely: 

H =  $1 ( r  +p2)f--'(Plh, r o / h 2 ) s ( p ) .  s(  - p )  
P 

+ $ ( r O - - r ) ~ f - ' ( p / &  r o / A 2 ) s ( p ) .  s ( - P ) .  (2.3) 
P 

AsT+ T,,ro+roc-O(~)andr+O. So,closeto7',,(ro-r)-O(~)anduo,-O(~),which 
allows one to use a perturbation theory in (ro - r )  and uoc with 

G-'(q, r, XO) = ( r  + q2)f-1(o, XO) (2.4) 
as the bare propagator, where o = p / A  and xo = r o / A  

Note that it suffices to introduce the cut-off in the quadratic part of the Hamiltonian 
(2.2) to get rid of all ultraviolet divergencies in the calculations, and thus, get the correct 
critical behaviour as r + 0. 

3. Universality of the critical exponent q 

The critical exponent 77 is defined through the behaviour of the renormalized two-point 
function &q, T )  at criticality (Fisher and Jasnow 1976): 

P ( q 7  T,) - qZ-". (3.1) 
Using the Dyson equation which relates e-' to the bare propagator G-' (see figure 1) 
and noting that X(0, Tc) = 0 (Z(9, T)  being the self-energy), we get 

q2-' - q'f-70, xoc) + rocV-Yo, xoc) -f- ' (o,  xoc>) 

+25(n + 2 ) u & ( ~ ( q ,  r = 0, X ~ , ) - B ( O ,  0, x ~ ~ ) ) + o ( E ~ )  (3.2) 
with 
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n 

Figure 1. Diagrammatic expansion for the two-point correlation function (0= uoc, X = 
(ro - I)). 

where I dR, stands for the angular integration on q. As we are working in the limit 
q <c A, we can neglect the U dependence in the left-hand side of (3.2). Moreover, the xoC 
dependences of the B’s in (3.2) give corrections of at least order e3.  Dividing (3.2) by 
f-’(o, xoc) = 1 + O ( E )  we get finally 

q2-v -q2-25(n + 2 ) & ( ~ ( ~ ,  0, o)-B(o, 0, o ) ) + o ( ~ ~ ) .  (3.4) 
To go further, we have to calculate uoc to order E and B(q,  0,O)- B(0, 0,O) to order E O .  

To calculate uoc we match the irreducible four-point function uR which behaves like 
r(””)’(2-’) (Wilson 1972) with its diagrammatic expansion (see figure 2). We find 

with 
uoc-4(n + 8 ) ~ : 3 4 ( r ,  xo)+o(u&, TU&) (3.5) r (c-2’ ) / (2-v)  - 

77 being of order E’ (see (3.5)). On calculating E4 one finds (see appendix 2): 

E&, xo)  - -4K4 In(r/h ’) + O(ro, E )  (3.7) 
where Kdl = 2d-’77d’2r(d/2). One also finds from (3.5) that uoc is indeed universal to 
order E ,  namely, 

+ O(EZ). 
E 

4(n + 8)K4 uoc = 

On the other hand, it is shown in appendix 3 that 

B(q, 0,O) -B(O, 0,O) = U(q) +q2X 

(3.8) 

(3.9) 
where U(q) is a universal function of q and X a non-universal constant. Thus the 
only non-universal part which is coming in (3.4) is of the form e*q’X, so that 
q’-’ -q2(1 + E’X)  +€’(universal function). Thus 77 is indeed universal. 

4. Calculation of & to order e’ 

In order to compute the susceptibility exponent y and the two-point correlation 
€unction, we need to know uoc up to order E’.  Keeping graphs up to order e 3  (see figure 
2), (3.5) reads: 

rt“” - -uoc+4(n +8)u&Ed(r, x 0 ) - 8 ( n  +8)&[4(n +2)uOcA4C3(r)+(ro-r)C4(r)] 

- 16(n2+6n +20)u&E&, 0)-64(5n +22)ui,D(r)+O(r, e4) (4.1) 
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Figure 2. Diagrammatic expansion for the four-point irreducible interaction uR. 

where 

D(r)  = -Gz@. r, x0)G(P', r, xo )G(p+p ' ,  r, XO). (4.4) 

Moreover, (3.4) gives 

(4.5) 2 r = rd - l (O ,  xo) +4(n + 2 ) u o c ~ 4  + 0(euOc,  Tuoc, uoc). 

The integrals A4, Ci(r), D(r)  are calculated in appendixes 1, 4 and 5 using the 
assumption that f(u, x) is analytic around (0,O). The matching condition (4.1) can be 
fulfilled providing that fL(u, 0) = 0 (see calculation of Ci). This condition implies that 
there is no linear term in p in the bare propagator as should be the case for short-range 
forces. Finally, the solution of (4.1) is: 

E A ' ( 1  + € U )  
4&(n +8) uoc = 

with 

where 

?(U, 0 )  being the angular average of f(u, 0) and A a non-universal constant. 

(Bruce et a1 1974). 
It is easy to verify that if f(u, x) = e(l-  U), (4.6) and (4.7) lead to the usual result 

5. Universality of the susceptibility exponent y 

The direct but naive way to calculate y is by computing the susceptibility directly, which 
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leads to (Wilson 1972): 

r(llY)-l - 1 + r - ’ ( ~ ( 9  = 0, r )  - ~ ( q  = 0, r = 0)). (5.1) 

If it is relatively easy to extract the leading divergent terms of Z(0, r) - Z(0, 0), it is much 
more difficult to determine the contributions of order O(r), needed to calculate y up to 
order E’ from (5.1). In fact, the best way to calculate y is to look at the two-point 
correlation function with composite s2 operator (Nickel 1974). Let us define: 

rdr, a)  = i(&r, q1)& 4 d - l  ddxl ddx2 

(5.2) 

(. . .), meaning average for the connected graphs only. Then, one can show (BrCzin eta1 
1973) that: 

r+O r&, qi = 0)  - rl-(l’y). (5.3) 
The diagrammatic expansion of rZs is very similar to the one for uR (see figure 3), 
namely: 

n 
= >-to+&+- 

Figure 3. Diagrammatic expsnsion for the two-point correlation function with composite s 2  
operator. 

All the graphs appearing in (5.4) have already been calculated for uR, which makes the 
computation of y trivial now. Using the values of the various graphs calculated in 
appendixes 1 , 2 , 4 , 5  and the value of uoc given by (4.6) and (4.7), one can check that all 
the dependences on A and f ( v ,  x )  cancel out in the expression for y. 

6. Universality of the scaling function 

For q << A the correlation scaling hypothesis asserts that for T >  T,, the two-point 
correlation function can be written asymptotically as 

G(4, T )  == rD(q5), (6.1) 
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,$ being the second moment correlation length. D(y = 45) is the scaling function. The 
scaling function has been studied in detail up to order e2 for some particular cut-offs 
(Combescot et a1 1975, Fisher and Aharony 1973) and has been shown to be 
independent of the size of the cut-off in these particular cases. The purpose of this 
section is to show that D(y) is also independent of the shape f(u, x )  to order e 2 .  
Subtracting &'(q = 0, r) from &'(q, r )  and using for X the diagrammatic expansion 
shown in figure 1 we get: 

G-'(q, r)-r = (r+q*)f-'(u, X ~ ) - ~ ' ( O ,  xo)-(rO-r)(f-l(u, x o ) - f - ' ( ~ ,  xo) )  

+ 2 7 n  + 2 ) & ( ~ ( q ,  r, x ~ ) - B ( o ,  r, x ~ ) ) + o ( E ~ ) ,  (6.2) 

B being defined by (3.3). As we are interested in the asymptotic limit v + 0, we can set 
U = 0 in (6.2).  The last term of the right-hand side of (6.2) can be evaluated by a similar 
procedure to the one in appendix 3. One can show (Combescot et a1 1975) that the only 
non-universal part coming from the difference of the B's is a non-universal constant- 
time q2.  

So the coefficient of q' in the right-hand side of (6.2) is f-'(O, xo)  +€'(non- 
universal) = 1 + O(E)  and thus it will not affect the universal part of the result to order 
e 2 .  Consequently, no cut-off -dependent part remains in the scaling function D ( y ) .  

7. Conclusions 

We have shown, in the framework of the WFGT (for an n-component Landau-Ginsburg 
model), the properties that the anisotropic cut-off functionf(u, x ) ,  contained in the bare 
propagator, has to have in order to lead to universal results. We have shown that if the 
cut-off f(u, x )  is analytic around (0,O) andfb(0, x )  = 0, the critical exponents 77 and y are 
universal. Hyperscaling then implies that all the critical exponents are universal. 
Moreover, the scaling function around T, is also shown to be universal. In a physical 
system, the cut-off function mimics the shape of the (anisotropic) Brillouin zone. The 
analyticity of f(u, x )  in U expresses the fact that we are dealing with a 'good' d- 
dimensional Brillouin zone. The Brillouin zone can be extremely anisotropic, but 
cannot 'collapse' in one direction to a ( d -  1)-dimensional zone. The analyticity of 
f(u, x )  in x expresses the fact that the bare Hamiltonian does not have some singular 
temperature dependence. Finally, the conditionfb(0, x )  = 0, expresses the fact that the 
bare propagator does not have a linear term in p ,  which is demanded by the short-range 
character of the interaction. The above conditions on f(u, x )  are thus hysically very 
reasonable and are fulfilled for any physical system described by a Aq5 -like Hamilto- 
nian. 

Note that the above verification has been shown up to order e2 only. However, the 
structure of the calculation suggests that the conclusions are valid to all order in E. 
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Appendix 1 

A4, defined by (4.2), can be written as: 

f ( 0 , O )  is equal to 1 so the function is convergent for x = 0, and the denominator can be 
replaced by u2  to order O(x). Since f(u, x) is analytical around (0,O) the Euler- 
MacLaurin expansion 

shows that the second term f k  gives a finite integral contributing to A4 (assumingfk(0,O) 
exists) and so can be omitted to order xo (which is, from ( 4 3 ,  of order r and U&). 

Finally, after performing the angular integration on the cut-off f (U, x)  which defines 

one finds 
m 

A4 = K4h Io v dvf(v, 0) + O(r, U&). (A.4) 

Appendix 2 

Let us look at the calculation of &(r, xo) (defined by (3.6)), up to order E .  Using the 
analyticity off and the fact that xo is of order e, one can expand Ed as 

(i) Considering the first integral of the right-hand side, one can very quickly find its 
most divergent part when x goes to zero, saying that for x = 0 the function behaves at 
the lower boundary like (1 - e  In v)v-l, so one expects In n + e  In2 x + . . . to be the 
asymptotic behaviour of the integral. Unfortunately, one also needs the second most 
divergent term, so one has to do the calculation more carefully. One fist  performs the 
angular average and then writes f2(v, 0) as ( f 2 ( v ,  0) - e( 1 - v ) )  + e( 1 - U) in order to 
separate the terms coming from the slope of the cut-off, so that 
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Becausef2 - 8 behaves at least as U for small u(f(0,O) = 1 andf(v, 0)  analytical), the last 
two integrals are convergent for x = 0, so, finally, one gets 

+ + E ( :  In2 x ++ In x + non-universal constant) + o(E')] ('4.7) 
with 

(ii) At the order of calculation necessary in this paper, we need only the divergent 
term, not the constant proportional to E .  Noting that xo  is of order E , ~ ( O ,  0) is equal to 1 ,  
one finds, in the second integral of (AS) ,  a term in In x if fl(0,O) # 0. This term comes, 
as usual, from the lower boundary of the integral. Namely, we get 

Finally, Ed (r, xo )  reads 

Ed(T, xo)  = K ~ A - ' [ - ;  In x -++i + E ( :  In2 x +: In x )  -x,&(o, 0) In X I .  (A.lO) 

Appendix 3 

The easiest way to calculate B(q, r =0, xo=O)-B(0, 0,O) (defined by (3.3)) is to 
replace the G(p, 0 , O )  by their Fourier transforms G(x, 0 , O )  so that 

B(q,O,O)-B(O,O,O)=- dR, I d4x G3(x, 0, O)(eiq"- 1 )  ( A . l l )  I do,  

and then to make the angular average on q which gives - 1 +[2J,(qx)/qx], the cut-off in 
x space operates now for small x .  Since the Fourier transform of Go(p, r )  = ( r  + p 2 ) - l  is 

J r  K l ( x  J r )  Go(x, r )  = 7 -, 
(2.ir) x 

(A.12) 

the bare propagator G(x, r, xo)  diverges like x-' without the help of the cut-off. Thus, 
one can rewrite (A. 1 1 )  in the form 

- q 2 x 2  B(q, 0 , O ) - B ( O , O ,  0)  = d4x G3(x, O,O)(-) 

(A.13) 

The second integral does not depend on the cut-off, the first one gives a non-universal 
constant for the coefficient of q2,  so that B(q, 0 ,O)  -B(O, 0,O) = q2(non-universal 
constant) +universal function of q = q2x + ~ ( 9 ) .  
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Appendix 4 

It is convenient to calculate directly 

because one knows from ( 4 3 ,  that 

ro= -4(n + ~ ) u & A ~ + o ( ~ ,  c 2 )  

and c ( x )  can be rewritten as 

(A.14) 

(A.15) 

(A. 16) 

Looking at the behaviour of the integrand at the lower boundary and expandingf(u, 0) 
near 0 one sees that the most divergent part of c(x) will be in l / x  if fL(u, 0) # 0 but in 
In x iffL(u, 0) = 0 andf:(u, 0) f 0. With a behaviour in l/x, it will be impossible to scale 
the renormalized four-point interaction uR as usual, and the critical exponent would not 
be universal. So we impose fk(u, 0) = 0 and c ( x )  is given by 

c (x )  = -:r0~4fi (o ,o)  In x + 0(xo, r, e2) 

fL(0,O) = 0. 

Appendix 5 

(A.17) 

(A.18) 

The second term is simply B&) and has already been calculated in appendix 2. The 
integration over p f  of the first integral converges without the help of any cut-off so one 
can replace G(p’, r, xo) by Go@’, r )  = ( r  +p2)-’ and one finds that 

=K4[1- J b 2 + 4 r )  l n ~  + Jb2 +44)]  
P 2Jr 

Inserting this value, the first integral is expected to behave like 

(A. 19) 

u-’(l -In u )  du -ln2x +. . 
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A more precise calculation is done again writing f 2  = f 2  - 0 + 6 so that 

(A.20) 

The last two integrals are convergent for x = 0, because for small U, f’(u,  0) - e( 1 - U) 
behaves like u2(f:(0, 0) being zero) and so will give a constant term in x o  (the last term 
giving L? already found in (A.9)). The first integral does not depend on the shape of the 
cut-off and gives [ -: ln2 x -$ In x +O(xo)], so that finally 

(A.21) ~ ( r )  = K:[$ In2 x -;13 ln x + 0 ( x o ) ] .  

References 

Brkzin E, Le Guillou J C and Zinn-Justin J 1973 Phys. Rev. D 8 434-46 
BNE A D, Droz M and Aharony A 1974 J. Phys. C: Solid St. Phys. 7 3673-86 
Combescot M, Droz M and Kosterlitz J M 1975 Phys. Rev. B 11 4661-73 
Fisher M E 1974 Rev. Mod. Phys. 46 597-616 
Fisher M E and Aharony A 1973 Phys. Rev. Lett. 31 123842 
Fisher M E and Jasnow D 1976 %ory ofcOrrelations in the Cn’tical Region, eds C Domb and M S Green (New 

Goldner G and Riedel E K 1975 Phys. Rev. Lett. 34 171-3 
Green M S 1976 to be published 
Mitter P K 1973 Phys. Rev. B 7 292742 
Mukamel D and Krinsky S 1976 Phys. Rev. B 13 5065-77 
Nickel B 1974 J. Phys. A: Math. Gen. submitted for publication 
Rudnick J 1975 Phys. Rev. L.ett. 34 438440  
Schroer B 1973 Phys. Rev. B 8 4200-8 
Shukla P and Green M S 1974 Phys. Rev. Lett. 33 1263-5 
- 1975 Phys. Rev. Lett. 34 436-8 
Wegner F J 1974 J. Phys. C: Solid St. Phys. 7 2098-108 
Wilson K G 1972 Phys. Rev. Len. 28 548-5 1 
Wilson K G and Kogut J 1974 Phys. Rep. 12 75-199 

York: Academic Press) to be published 


